Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

Introduction

Hello World

package org.kotlinlang.play         // 1

fun main() {                        // 2
    println("Hello, World!")        // 3
}
  1. Kotlin code is usually defined in packages. Package specification is optional: If you don't specify a package in a source file, its content goes to the default package.
  2. An entry point to a Kotlin application is the main function. You can declare it without any parameters. The return type is not specified, which means that the function returns nothing.
  3. println writes a line to the standard output. It is imported implicitly. Also, note that semicolons at the end of code lines are optional.

Functions

Default Parameter Values and Named Arguments

fun printMessage(message: String): Unit {                               // 1
    println(message)
}

fun printMessageWithPrefix(message: String, prefix: String = "Info") {  // 2
    println("[$prefix] $message")
}

fun sum(x: Int, y: Int): Int {                                          // 3
    return x + y
}

fun multiply(x: Int, y: Int) = x * y                                    // 4

fun main() {
    printMessage("Hello")                                               // 5                    
    printMessageWithPrefix("Hello", "Log")                              // 6
    printMessageWithPrefix("Hello")                                     // 7
    printMessageWithPrefix(prefix = "Log", message = "Hello")           // 8
    println(sum(1, 2))                                                  // 9
    println(multiply(2, 4))                                             // 10
}
  1. A simple function that takes a parameter of type String and returns Unit (i.e., no return value).
  2. A function that takes a second optional parameter with default value Info. The return type is omitted, meaning that it's actually Unit.
  3. A function that returns an integer.
  4. A single-expression function that returns an integer (inferred).
  5. Calls the first function with the argument Hello.
  6. Calls the function with two parameters, passing values for both of them.
  7. Calls the same function omitting the second one. The default value Info is used.
  8. Calls the same function using named arguments and changing the order of the arguments.
  9. Prints the result of the sum function call.
  10. Prints the result of the multiply function call.

Infix Functions

Member functions and extensions with a single parameter can be turned into infix functions.

fun main() {

  infix fun Int.times(str: String) = str.repeat(this)        // 1
  println(2 times "Bye ")                                    // 2

  val pair = "Ferrari" to "Katrina"                          // 3
  println(pair)

  infix fun String.onto(other: String) = Pair(this, other)   // 4
  val myPair = "McLaren" onto "Lucas"
  println(myPair)

  val sophia = Person("Sophia")
  val claudia = Person("Claudia")
  sophia likes claudia                                       // 5
}

class Person(val name: String) {
  val likedPeople = mutableListOf<Person>()
  infix fun likes(other: Person) { likedPeople.add(other) }  // 6
}
  1. Defines an infix extension function on Int.
  2. Calls the infix function.
  3. Creates a Pair by calling the infix function to from the standard library.
  4. Here's your own implementation of to creatively called onto.
  5. Infix notation also works on members functions (methods).
  6. The containing class becomes the first parameter.

Note that the example uses local functions (functions nested within another function).

Operator Functions

Certain functions can be "upgraded" to operators, allowing their calls with the corresponding operator symbol.

fun main() {
  operator fun Int.times(str: String) = str.repeat(this)       // 1
  println(2 * "Bye ")                                          // 2

  operator fun String.get(range: IntRange) = substring(range)  // 3
  val str = "Always forgive your enemies; nothing annoys them so much."
  println(str[0..14])                                          // 4
}
  1. This takes the infix function from above one step further using the operator modifier.
  2. The operator symbol for times() is * so that you can call the function using 2 * "Bye".
  3. An operator function allows easy range access on strings.
  4. The get() operator enables bracket-access syntax.

Functions with vararg Parameters

Varargs allow you to pass any number of arguments by separating them with commas.

fun main() {
    fun printAll(vararg messages: String) {                            // 1
        for (m in messages) println(m)
    }
    printAll("Hello", "Hallo", "Salut", "Hola", "你好")                 // 2
    
    fun printAllWithPrefix(vararg messages: String, prefix: String) {  // 3
        for (m in messages) println(prefix + m)
    }
    printAllWithPrefix(
            "Hello", "Hallo", "Salut", "Hola", "你好",
            prefix = "Greeting: "                                          // 4
    )

    fun log(vararg entries: String) {
        printAll(*entries)                                             // 5
    }
    log("Hello", "Hallo", "Salut", "Hola", "你好")
}
  1. The vararg modifier turns a parameter into a vararg.
  2. This allows calling printAll with any number of string arguments.
  3. Thanks to named parameters, you can even add another parameter of the same type after the vararg. This wouldn't be allowed in Java because there's no way to pass a value.
  4. Using named parameters, you can set a value to prefix separately from the vararg.
  5. At runtime, a vararg is just an array. To pass it along into a vararg parameter, use the special spread operator * that lets you pass in *entries (a vararg of String) instead of entries (an Array<String>).

Variables

Kotlin has powerful type inference. While you can explicitly declare the type of a variable, you'll usually let the compiler do the work by inferring it. Kotlin does not enforce immutability, though it is recommended. In essence use val over var.

fun main() {
    var a: String = "initial"  // 1
    println(a)
    val b: Int = 1             // 2
    val c = 3                  // 3
}
  1. Declares a mutable variable and initializes it.
  2. Declares an immutable variable and initializes it.
  3. Declares an immutable variable and initializes it without specifying the type. The compiler infers the type Int.
fun main() {
    var e: Int  // 1
    println(e)  // 2
}

{validate="false"}

  1. Declares a variable without initialization.
  2. An attempt to use the variable causes a compiler error: Variable 'e' must be initialized.

You're free to choose when you initialize a variable, however, it must be initialized before the first read.

fun someCondition() = true 

fun main() {
    val d: Int  // 1
    
    if (someCondition()) {
        d = 1   // 2
    } else {
        d = 2   // 2
    }
    
    println(d) // 3
}
  1. Declares a variable without initialization.
  2. Initializes the variable with different values depending on some condition.
  3. Reading the variable is possible because it's already been initialized.

Null Safety

In an effort to rid the world of NullPointerException, variable types in Kotlin don't allow the assignment of null. If you need a variable that can be null, declare it nullable by adding ? at the end of its type.

fun main() {
    var neverNull: String = "This can't be null"            // 1
    
    neverNull = null                                        // 2
    
    var nullable: String? = "You can keep a null here"      // 3
    
    nullable = null                                         // 4
    
    var inferredNonNull = "The compiler assumes non-null"   // 5
    
    inferredNonNull = null                                  // 6
    
    fun strLength(notNull: String): Int {                   // 7
        return notNull.length
    }
    
    strLength(neverNull)                                    // 8
    strLength(nullable)                                     // 9
}

{validate="false"}

  1. Declares a non-null String variable.
  2. When trying to assign null to non-nullable variable, a compilation error is produced.
  3. Declares a nullable String variable.
  4. Sets the null value to the nullable variable. This is OK.
  5. When inferring types, the compiler assumes non-null for variables that are initialized with a value.
  6. When trying to assign null to a variable with inferred type, a compilation error is produced.
  7. Declares a function with a non-null string parameter.
  8. Calls the function with a String (non-nullable) argument. This is OK.
  9. When calling the function with a String? (nullable) argument, a compilation error is produced.

Working with Nulls

Sometimes Kotlin programs need to work with null values, such as when interacting with external Java code or representing a truly absent state. Kotlin provides null tracking to elegantly deal with such situations.

fun describeString(maybeString: String?): String {              // 1
    if (maybeString != null && maybeString.length > 0) {        // 2
        return "String of length ${maybeString.length}"
    } else {
        return "Empty or null string"                           // 3
    }
}

fun main() {
    println(describeString(null))
}
  1. A function that takes in a nullable string and returns its description.
  2. If the given string is not null and not empty, return information about its length.
  3. Otherwise, tell the caller that the string is empty or null.

Classes

The class declaration consists of the class name, the class header (specifying its type parameters, the primary constructor etc.) and the class body, surrounded by curly braces. Both the header and the body are optional; if the class has no body, curly braces can be omitted.

class Customer                                  // 1

class Contact(val id: Int, var email: String)   // 2

fun main() {

    val customer = Customer()                   // 3
    
    val contact = Contact(1, "mary@gmail.com")  // 4

    println(contact.id)                         // 5
    contact.email = "jane@gmail.com"            // 6
}
  1. Declares a class named Customer without any properties or user-defined constructors. A non-parameterized default constructor is created by Kotlin automatically.
  2. Declares a class with two properties: immutable id and mutable email, and a constructor with two parameters id and email.
  3. Creates an instance of the class Customer via the default constructor. Note that there is no new keyword in Kotlin.
  4. Creates an instance of the class Contact using the constructor with two arguments.
  5. Accesses the property id.
  6. Updates the value of the property email.

Generics

Generics are a genericity mechanism that's become standard in modern languages. Generic classes and functions increase code reusability by encapsulating common logic that is independent of a particular generic type, like the logic inside a List<T> is independent of what T is.

Generic Classes

The first way to use generics in Kotlin is creating generic classes.

class MutableStack<E>(vararg items: E) {              // 1

  private val elements = items.toMutableList()

  fun push(element: E) = elements.add(element)        // 2

  fun peek(): E = elements.last()                     // 3

  fun pop(): E = elements.removeAt(elements.size - 1)

  fun isEmpty() = elements.isEmpty()

  fun size() = elements.size

  override fun toString() = "MutableStack(${elements.joinToString()})"
}

fun main() {
  val stack = MutableStack(0.62, 3.14, 2.7)
  stack.push(9.87)
  println(stack)

  println("peek(): ${stack.peek()}")
  println(stack)

  for (i in 1..stack.size()) {
    println("pop(): ${stack.pop()}")
    println(stack)
  }
}

  1. Defines a generic class MutableStack<E> where E is called the generic type parameter. At use-site, it is assigned to a specific type such as Int by declaring a MutableStack<Int>.
  2. Inside the generic class, E can be used as a parameter like any other type.
  3. You can also use E as a return type.

Note that the implementation makes heavy use of Kotlin's shorthand syntax for functions that can be defined in a single expression.

Generic Functions

You can also generify functions if their logic is independent of a specific type. For instance, you can write a utility function to create mutable stacks:

class MutableStack<E>(vararg items: E) {              // 1

  private val elements = items.toMutableList()

  fun push(element: E) = elements.add(element)        // 2

  fun peek(): E = elements.last()                     // 3

  fun pop(): E = elements.removeAt(elements.size - 1)

  fun isEmpty() = elements.isEmpty()

  fun size() = elements.size

  override fun toString() = "MutableStack(${elements.joinToString()})"
}

fun <E> mutableStackOf(vararg elements: E) = MutableStack(*elements)

fun main() {
  val stack = mutableStackOf(0.62, 3.14, 2.7)
  println(stack)
}

Note that the compiler can infer the generic type from the parameters of mutableStackOf so that you don't have to write mutableStackOf<Double>(...).

Inheritance

Kotlin fully supports the traditional object-oriented inheritance mechanism.

open class Dog {                // 1
    open fun sayHello() {       // 2
        println("wow wow!")
    }
}

class Yorkshire : Dog() {       // 3
    override fun sayHello() {   // 4
        println("wif wif!")
    }
}

fun main() {
    val dog: Dog = Yorkshire()
    dog.sayHello()
}
  1. Kotlin classes are final by default. If you want to allow the class inheritance, mark the class with the open modifier.
  2. Kotlin methods are also final by default. As with the classes, the open modifier allows overriding them.
  3. A class inherits a superclass when you specify the : SuperclassName() after its name. The empty parentheses () indicate an invocation of the superclass default constructor.
  4. Overriding methods or attributes requires the override modifier.

Inheritance with Parameterized Constructor

open class Tiger(val origin: String) {
    fun sayHello() {
        println("A tiger from $origin says: grrhhh!")
    }
}

class SiberianTiger : Tiger("Siberia")                  // 1

fun main() {
    val tiger: Tiger = SiberianTiger()
    tiger.sayHello()
}
  1. If you want to use a parameterized constructor of the superclass when creating a subclass, provide the constructor arguments in the subclass declaration.

Passing Constructor Arguments to Superclass

open class Lion(val name: String, val origin: String) {
    fun sayHello() {
        println("$name, the lion from $origin says: graoh!")
    }
}

class Asiatic(name: String) : Lion(name = name, origin = "India") // 1

fun main() {
    val lion: Lion = Asiatic("Rufo")                              // 2
    lion.sayHello()
}
  1. name in the Asiatic declaration is neither a var nor val: it's a constructor argument, whose value is passed to the name property of the superclass Lion.
  2. Creates an Asiatic instance with the name Rufo. The call invokes the Lion constructor with arguments Rufo and India.

Control Flow

When

Instead of the widely used switch statement, Kotlin provides the more flexible and clear when construction. It can be used either as a statement or as an expression.

When Statement

fun main() {
    cases("Hello")
    cases(1)
    cases(0L)
    cases(MyClass())
    cases("hello")
}

fun cases(obj: Any) {                                
    when (obj) {                                     // 1   
        1 -> println("One")                          // 2
        "Hello" -> println("Greeting")               // 3
        is Long -> println("Long")                   // 4
        !is String -> println("Not a string")        // 5
        else -> println("Unknown")                   // 6
    }   
}

class MyClass
  1. This is a when statement.
  2. Checks whether obj equals to 1.
  3. Checks whether obj equals to "Hello".
  4. Performs type checking.
  5. Performs inverse type checking.
  6. Default statement (might be omitted).

Note that all branch conditions are checked sequentially until one of them is satisfied. So, only the first suitable branch will be executed.

When Expression

fun main() {
    println(whenAssign("Hello"))
    println(whenAssign(3.4))
    println(whenAssign(1))
    println(whenAssign(MyClass()))
}

fun whenAssign(obj: Any): Any {
    val result = when (obj) {                   // 1
        1 -> "one"                              // 2
        "Hello" -> 1                            // 3
        is Long -> false                        // 4
        else -> 42                              // 5
    }
    return result
}

class MyClass
  1. This is a when expression.
  2. Sets the value to "one" if obj equals to 1.
  3. Sets the value to one if obj equals to "Hello".
  4. Sets the value to false if obj is an instance of Long.
  5. Sets the value 42 if none of the previous conditions are satisfied. Unlike in when statement, the default branch is usually required in when expression, except the case when the compiler can check that other branches cover all possible cases.

Loops

Kotlin supports all the commonly used loops: for, while, do-while

for

for in Kotlin works the same way as in most languages.

fun main(args: Array<String>) {
    val cakes = listOf("carrot", "cheese", "chocolate")
    
    for (cake in cakes) {                               // 1
        println("Yummy, it's a $cake cake!")
    }

}
  1. Loops through each cake in the list.

while and do-while

while and do-while constructs work similarly to most languages as well.

fun eatACake() = println("Eat a Cake")
fun bakeACake() = println("Bake a Cake")

fun main(args: Array<String>) {
    var cakesEaten = 0
    var cakesBaked = 0
    
    while (cakesEaten < 5) {                    // 1
        eatACake()
        cakesEaten ++
    }
    
    do {                                        // 2
        bakeACake()
        cakesBaked++
    } while (cakesBaked < cakesEaten)

}
  1. Executes the block while the condition is true.
  2. Executes the block first and then checking the condition.

Iterators

You can define your own iterators in your classes by implementing the iterator operator in them.

class Animal(val name: String)

class Zoo(val animals: List<Animal>) {

    operator fun iterator(): Iterator<Animal> {             // 1
        return animals.iterator()                           // 2
    }
}

fun main() {

    val zoo = Zoo(listOf(Animal("zebra"), Animal("lion")))

    for (animal in zoo) {                                   // 3
        println("Watch out, it's a ${animal.name}")
    }

}
  1. Defines an iterator in a class. It must be named iterator and have the operator modifier.
  2. Returns the iterator that meets the following method requirements:
  • next(): Animal
  • hasNext(): Boolean
  1. Loops through animals in the zoo with the user-defined iterator.

The iterator can be declared in the type or as an extension function.

Ranges

There is a set of tools for defining ranges in Kotlin. Let's have a brief look at them.

fun main() {
    for(i in 0..3) {             // 1
        print(i)
    }
    print(" ")

    for(i in 0 until 3) {        // 2
        print(i)
    }
    print(" ")

    for(i in 2..8 step 2) {      // 3
        print(i)
    }
    print(" ")

    for (i in 3 downTo 0) {      // 4
        print(i)
    }
    print(" ")

}
  1. Iterates over a range starting from 0 up to 3 (inclusive). Like 'for(i=0; i<=3; ++i)' in other programming languages (C/C++/Java).
  2. Iterates over a range starting from 0 up to 3 (exclusive). Like for loop in Python or like 'for(i=0; i<3; ++i)' in other programming languages (C/C++/Java).
  3. Iterates over a range with a custom increment step for consecutive elements.
  4. Iterates over a range in reverse order.

Char ranges are also supported:

fun main() {
    for (c in 'a'..'d') {        // 1
        print(c)
    }
    print(" ")

    for (c in 'z' downTo 's' step 2) { // 2
        print(c)
    }
    print(" ")

}
  1. Iterates over a char range in alphabetical order.
  2. Char ranges support step and downTo as well.

Ranges are also useful in if statements:

fun main() {
    val x = 2
    if (x in 1..5) {            // 1
        print("x is in range from 1 to 5")
    }
    println()

    if (x !in 6..10) {          // 2
        print("x is not in range from 6 to 10")
    }
}
  1. Checks if a value is in the range.
  2. !in is the opposite of in.

Equality Checks

Kotlin uses == for structural comparison and === for referential comparison.

More precisely, a == b compiles down to if (a == null) b == null else a.equals(b).

fun main() {

  val authors = setOf("Shakespeare", "Hemingway", "Twain")
  val writers = setOf("Twain", "Shakespeare", "Hemingway")

  println(authors == writers)   // 1
  println(authors === writers)  // 2
}
  1. Returns true because it calls authors.equals(writers) and sets ignore element order.
  2. Returns false because authors and writers are distinct references.

Conditional Expression

There is no ternary operator condition ? then : else in Kotlin. Instead, if may be used as an expression:

fun main() {
    fun max(a: Int, b: Int) = if (a > b) a else b         // 1

    println(max(99, -42))
}
  1. if is an expression here: it returns a value.

Special Classes

Data Classes

Data classes make it easy to create classes that are used to store values. Such classes are automatically provided with methods for copying, getting a string representation, and using instances in collections. You can override these methods with your own implementations in the class declaration.

data class User(val name: String, val id: Int) {           // 1
    override fun equals(other: Any?) =
        other is User && other.id == this.id               // 2
}
fun main() {
    val user = User("Alex", 1)
    println(user)                                          // 3

    val secondUser = User("Alex", 1)
    val thirdUser = User("Max", 2)

    println("user == secondUser: ${user == secondUser}")   // 4
    println("user == thirdUser: ${user == thirdUser}")

    // hashCode() function
    println(user.hashCode())                               // 5
    println(secondUser.hashCode())
    println(thirdUser.hashCode())

    // copy() function
    println(user.copy())                                   // 6
    println(user === user.copy())                          // 7
    println(user.copy("Max"))                              // 8
    println(user.copy(id = 3))                             // 9

    println("name = ${user.component1()}")                 // 10
    println("id = ${user.component2()}")
}
  1. Defines a data class with the data modifier.
  2. Override the default equals method by declaring users equal if they have the same id.
  3. Method toString is auto-generated, which makes println output look nice.
  4. Our custom equals considers two instances equal if their ids are equal.
  5. Data class instances with exactly matching attributes have the same hashCode.
  6. Auto-generated copy function makes it easy to create a new instance.
  7. copy creates a new instance, so the object and its copy have distinct references.
  8. When copying, you can change values of certain properties. copy accepts arguments in the same order as the class constructor.
  9. Use copy with named arguments to change the value despite of the properties order.
  10. Auto-generated componentN functions let you get the values of properties in the order of declaration.

Enum Classes

Enum classes are used to model types that represent a finite set of distinct values, such as directions, states, modes, and so forth.

enum class State {
    IDLE, RUNNING, FINISHED                           // 1
}

fun main() {
    val state = State.RUNNING                         // 2
    val message = when (state) {                      // 3
        State.IDLE -> "It's idle"
        State.RUNNING -> "It's running"
        State.FINISHED -> "It's finished"
    }
    println(message)
}

  1. Defines a simple enum class with three enum constants. The number of constants is always finite and they are all distinct.
  2. Accesses an enum constant via the class name.
  3. With enums, the compiler can infer if a when-expression is exhaustive so that you don't need the else-case.

Enums may contain properties and methods like other classes, separated from the list of enum constants by a semicolon.


enum class Color(val rgb: Int) {                      // 1
    RED(0xFF0000),                                    // 2
    GREEN(0x00FF00),
    BLUE(0x0000FF),
    YELLOW(0xFFFF00);

    fun containsRed() = (this.rgb and 0xFF0000 != 0)  // 3
}

fun main() {
    val red = Color.RED
    println(red)                                      // 4
    println(red.containsRed())                        // 5
    println(Color.BLUE.containsRed())                 // 6
    println(Color.YELLOW.containsRed())               // 7
}

  1. Defines an enum class with a property and a method.
  2. Each enum constant must pass an argument for the constructor parameter.
  3. Enum class members are separated from the constant definitions by a semicolon.
  4. The default toString returns the name of the constant, here "RED".
  5. Calls a method on an enum constant.
  6. Calls a method via enum class name.
  7. The RGB values of RED and YELLOW share first bits (FF) so this prints 'true'.

Sealed Classes

Sealed classes let you restrict the use of inheritance. Once you declare a class sealed, it can only be subclassed from inside the same package where the sealed class is declared. It cannot be subclassed outside of the package where the sealed class is declared.

sealed class Mammal(val name: String)                                                   // 1

class Cat(val catName: String) : Mammal(catName)                                        // 2
class Human(val humanName: String, val job: String) : Mammal(humanName)

fun greetMammal(mammal: Mammal): String {
    when (mammal) {                                                                     // 3
        is Human -> return "Hello ${mammal.name}; You're working as a ${mammal.job}"    // 4
        is Cat -> return "Hello ${mammal.name}"                                         // 5     
    }                                                                                   // 6
}

fun main() {
    println(greetMammal(Cat("Snowy")))
}
  1. Defines a sealed class.
  2. Defines subclasses. Note that all subclasses must be in the same package.
  3. Uses an instance of the sealed class as an argument in a when expression.
  4. A smartcast is performed, casting Mammal to Human.
  5. A smartcast is performed, casting Mammal to Cat.
  6. The else-case is not necessary here since all possible subclasses of the sealed class are covered. With a non-sealed superclass else would be required.

Object Keyword

Classes and objects in Kotlin work the same way as in most object-oriented languages: a class is a blueprint, and an object is an instance of a class. Usually, you define a class and then create multiple instances of that class:

import java.util.Random

class LuckDispatcher {                    //1 
    fun getNumber() {                     //2 
        var objRandom = Random()
        println(objRandom.nextInt(90))
    }
}

fun main() {
    val d1 = LuckDispatcher()             //3
    val d2 = LuckDispatcher()
    
    d1.getNumber()                        //4 
    d2.getNumber()
}
  1. Defines a blueprint.
  2. Defines a method.
  3. Creates instances.
  4. Calls the method on instances.

In Kotlin you also have the object keyword. It is used to obtain a data type with a single implementation.

If you are a Java user and want to understand what "single" means, you can think of the Singleton pattern: it ensures you that only one instance of that class is created even if 2 threads try to create it.

To achieve this in Kotlin, you only need to declare an object: no class, no constructor, only a lazy instance. Why lazy? Because it will be created once when the object is accessed. Otherwise, it won't even be created.

object Expression

Here is a basic typical usage of an object expression: a simple object/properties structure. There is no need to do so in class declaration: you create a single object, declare its members and access it within one function. Objects like this are often created in Java as anonymous class instances.

fun rentPrice(standardDays: Int, festivityDays: Int, specialDays: Int): Unit {  //1

    val dayRates = object {                                                     //2
        var standard: Int = 30 * standardDays
        var festivity: Int = 50 * festivityDays
        var special: Int = 100 * specialDays
    }

    val total = dayRates.standard + dayRates.festivity + dayRates.special       //3

    print("Total price: $$total")                                               //4

}

fun main() {
    rentPrice(10, 2, 1)                                                         //5
}
  1. Creates a function with parameters.
  2. Creates an object to use when calculating the result value.
  3. Accesses the object's properties.
  4. Prints the result.
  5. Calls the function. This is when the object is actually created.

object Declaration

You can also use the object declaration. It isn't an expression, and can't be used in a variable assignment. You should use it to directly access its members:

object DoAuth {                                                 //1 
    fun takeParams(username: String, password: String) {        //2 
        println("input Auth parameters = $username:$password")
    }
}

fun main(){
    DoAuth.takeParams("foo", "qwerty")                          //3
}

  1. Creates an object declaration.
  2. Defines the object method.
  3. Calls the method. This is when the object is actually created.

Companion Objects

An object declaration inside a class defines another useful case: the companion object. Syntactically it's similar to the static methods in Java: you call object members using its class name as a qualifier. If you plan to use a companion object in Kotlin, consider using a package-level function instead.

class BigBen {                                  //1 
    companion object Bonger {                   //2
        fun getBongs(nTimes: Int) {             //3
            for (i in 1 .. nTimes) {
                print("BONG ")
            }
        }
    }
}

fun main() {
    BigBen.getBongs(12)                         //4
}
  1. Defines a class.
  2. Defines a companion. Its name can be omitted.
  3. Defines a companion object method.
  4. Calls the companion object method via the class name.

Functional

Higher-Order Functions

A higher-order function is a function that takes another function as parameter and/or returns a function.

Taking Functions as Parameters

fun calculate(x: Int, y: Int, operation: (Int, Int) -> Int): Int {  // 1
    return operation(x, y)                                          // 2
}

fun sum(x: Int, y: Int) = x + y                                     // 3

fun main() {
    val sumResult = calculate(4, 5, ::sum)                          // 4
    val mulResult = calculate(4, 5) { a, b -> a * b }               // 5
    println("sumResult $sumResult, mulResult $mulResult")
}
  1. Declares a higher-order function. It takes two integer parameters, x and y. Additionally, it takes another function operation as a parameter. The operation parameters and return type are also defined in the declaration.
  2. The higher order function returns the result of operation invocation with the supplied arguments.
  3. Declares a function that matches the operationsignature.
  4. Invokes the higher-order function passing in two integer values and the function argument ::sum. :: is the notation that references a function by name in Kotlin.
  5. Invokes the higher-order function passing in a lambda as a function argument. Looks clearer, doesn't it?

Returning Functions

fun operation(): (Int) -> Int {                                     // 1
    return ::square
}

fun square(x: Int) = x * x                                          // 2

fun main() {
    val func = operation()                                          // 3
    println(func(2))                                                // 4
}
  1. Declares a higher-order function that returns a function. (Int) -> Int represents the parameters and return type of the square function.
  2. Declares a function matching the signature.
  3. Invokes operation to get the result assigned to a variable. Here func becomes square which is returned by operation.
  4. Invokes func. The square function is actually executed.

Lambda Functions

Lambda functions ("lambdas") are a simple way to create functions ad-hoc. Lambdas can be denoted very concisely in many cases thanks to type inference and the implicit it variable.

fun main() {
    // All examples create a function object that performs upper-casing.
    // So it's a function from String to String

    val upperCase1: (String) -> String = { str: String -> str.uppercase() } // 1

    val upperCase2: (String) -> String = { str -> str.uppercase() }         // 2

    val upperCase3 = { str: String -> str.uppercase() }                     // 3

    // val upperCase4 = { str -> str.uppercase() }                          // 4

    val upperCase5: (String) -> String = { it.uppercase() }                 // 5

    val upperCase6: (String) -> String = String::uppercase                  // 6

    println(upperCase1("hello"))
    println(upperCase2("hello"))
    println(upperCase3("hello"))
    println(upperCase5("hello"))
    println(upperCase6("hello"))
}
  1. A lambda in all its glory, with explicit types everywhere. The lambda is the part in curly braces, which is assigned to a variable of type (String) -> String (a function type).
  2. Type inference inside lambda: the type of the lambda parameter is inferred from the type of the variable it's assigned to.
  3. Type inference outside lambda: the type of the variable is inferred from the type of the lambda parameter and return value.
  4. You cannot do both together, the compiler has no chance to infer the type that way.
  5. For lambdas with a single parameter, you don't have to explicitly name it. Instead, you can use the implicit it variable. This is especially useful when the type of it can be inferred (which is often the case).
  6. If your lambda consists of a single function call, you may use function pointers (::) .

Extension Functions and Properties

Kotlin lets you add new members to any class with the extensions mechanism. Namely, there are two types of extensions: extension functions and extension properties. They look a lot like normal functions and properties but with one important difference: you need to specify the type that you extend.

data class Item(val name: String, val price: Float)                                         // 1  

data class Order(val items: Collection<Item>)  

fun Order.maxPricedItemValue(): Float = this.items.maxByOrNull { it.price }?.price ?: 0F    // 2  
fun Order.maxPricedItemName() = this.items.maxByOrNull { it.price }?.name ?: "NO_PRODUCTS"

val Order.commaDelimitedItemNames: String                                                   // 3
    get() = items.map { it.name }.joinToString()

fun main() {

    val order = Order(listOf(Item("Bread", 25.0F), Item("Wine", 29.0F), Item("Water", 12.0F)))
    
    println("Max priced item name: ${order.maxPricedItemName()}")                           // 4
    println("Max priced item value: ${order.maxPricedItemValue()}")
    println("Items: ${order.commaDelimitedItemNames}")                                      // 5

}
  1. Defines simple models of Item and Order. Order can contain a collection of Item objects.
  2. Adds extension functions for the Order type.
  3. Adds an extension property for the Order type.
  4. Calls extension functions directly on an instance of Order.
  5. Accesses the extension property on an instance of Order.

It is even possible to execute extensions on null references. In an extension function, you can check the object for null and use the result in your code:

fun <T> T?.nullSafeToString() = this?.toString() ?: "NULL"  // 1
fun main() {
    println(null.nullSafeToString())
    println("Kotlin".nullSafeToString())
}

Collections

List

A list is an ordered collection of items. In Kotlin, lists can be either mutable (MutableList) or read-only (List). For list creation, use the standard library functions listOf() for read-only lists and mutableListOf() for mutable lists. To prevent unwanted modifications, obtain read-only views of mutable lists by casting them to List.

val systemUsers: MutableList<Int> = mutableListOf(1, 2, 3)        // 1
val sudoers: List<Int> = systemUsers                              // 2

fun addSystemUser(newUser: Int) {                                 // 3
    systemUsers.add(newUser)                      
}

fun getSysSudoers(): List<Int> {                                  // 4
    return sudoers
}

fun main() {
    addSystemUser(4)                                              // 5 
    println("Tot sudoers: ${getSysSudoers().size}")               // 6
    getSysSudoers().forEach {                                     // 7
        i -> println("Some useful info on user $i")
    }
    // getSysSudoers().add(5) <- Error!                           // 8
}
  1. Creates a MutableList.
  2. Creates a read-only view of the list.
  3. Adds a new item to the MutableList.
  4. A function that returns an immutable List.
  5. Updates the MutableList. All related read-only views are updated as well since they point to the same object.
  6. Retrieves the size of the read-only list.
  7. Iterates the list and prints its elements.
  8. Attempting to write to the read-only view causes a compilation error.

Set

A set is an unordered collection that does not support duplicates. For creating sets, there are functions setOf() and mutableSetOf(). A read-only view of a mutable set can be obtained by casting it to Set.

val openIssues: MutableSet<String> = mutableSetOf("uniqueDescr1", "uniqueDescr2", "uniqueDescr3") // 1

fun addIssue(uniqueDesc: String): Boolean {                                                       
    return openIssues.add(uniqueDesc)                                                             // 2
}

fun getStatusLog(isAdded: Boolean): String {                                                       
    return if (isAdded) "registered correctly." else "marked as duplicate and rejected."          // 3
}

fun main() {
    val aNewIssue: String = "uniqueDescr4"
    val anIssueAlreadyIn: String = "uniqueDescr2" 

    println("Issue $aNewIssue ${getStatusLog(addIssue(aNewIssue))}")                              // 4
    println("Issue $anIssueAlreadyIn ${getStatusLog(addIssue(anIssueAlreadyIn))}")                // 5 
}
  1. Creates a Set with given elements.
  2. Returns a boolean value showing if the element was actually added.
  3. Returns a string, based on function input parameter.
  4. Prints a success message: the new element is added to the Set.
  5. Prints a failure message: the element can't be added because it duplicates an existing element.

Map

A map is a collection of key/value pairs, where each key is unique and is used to retrieve the corresponding value. For creating maps, there are functions mapOf() and mutableMapOf(). Using the to infix function makes initialization less noisy. A read-only view of a mutable map can be obtained by casting it to Map.

const val POINTS_X_PASS: Int = 15
val EZPassAccounts: MutableMap<Int, Int> = mutableMapOf(1 to 100, 2 to 100, 3 to 100)   // 1
val EZPassReport: Map<Int, Int> = EZPassAccounts                                        // 2

fun updatePointsCredit(accountId: Int) {
    if (EZPassAccounts.containsKey(accountId)) {                                        // 3
        println("Updating $accountId...")                                               
        EZPassAccounts[accountId] = EZPassAccounts.getValue(accountId) + POINTS_X_PASS  // 4
    } else {
        println("Error: Trying to update a non-existing account (id: $accountId)")
    } 
}

fun accountsReport() {
    println("EZ-Pass report:")
    EZPassReport.forEach {                                                              // 5
        k, v -> println("ID $k: credit $v")
    }
}

fun main() {
    accountsReport()                                                                    // 6
    updatePointsCredit(1)                                                               // 7
    updatePointsCredit(1)                                                               
    updatePointsCredit(5)                                                               // 8 
    accountsReport()                                                                    // 9
}
  1. Creates a mutable Map.
  2. Creates a read-only view of the Map.
  3. Checks if the Map's key exists.
  4. Reads the corresponding value and increments it with a constant value.
  5. Iterates immutable Map and prints key/value pairs.
  6. Reads the account points balance, before updates.
  7. Updates an existing account two times.
  8. Tries to update a non-existing account: prints an error message.
  9. Reads the account points balance, after updates.

filter

filter function enables you to filter collections. It takes a filter predicate as a lambda-parameter. The predicate is applied to each element. Elements that make the predicate true are returned in the result collection.

fun main() {

    val numbers = listOf(1, -2, 3, -4, 5, -6)      // 1
    
    val positives = numbers.filter { x -> x > 0 }  // 2
    
    val negatives = numbers.filter { it < 0 }      // 3

    println("Numbers: $numbers")
    println("Positive Numbers: $positives")
    println("Negative Numbers: $negatives")
}
  1. Defines collection of numbers.
  2. Gets positive numbers.
  3. Uses the shorter it notation to get negative numbers.

map

map extension function enables you to apply a transformation to all elements in a collection. It takes a transformer function as a lambda-parameter.

fun main() {

    val numbers = listOf(1, -2, 3, -4, 5, -6)     // 1
    
    val doubled = numbers.map { x -> x * 2 }      // 2
    
    val tripled = numbers.map { it * 3 }          // 3

    println("Numbers: $numbers")
    println("Doubled Numbers: $doubled")
    println("Tripled Numbers: $tripled")
}
  1. Defines a collection of numbers.
  2. Doubles numbers.
  3. Uses the shorter it notation to triple the numbers.

any, all, none

These functions check the existence of collection elements that match a given predicate.

Function any

Function any returns true if the collection contains at least one element that matches the given predicate.

fun main() {

    val numbers = listOf(1, -2, 3, -4, 5, -6)            // 1
    
    val anyNegative = numbers.any { it < 0 }             // 2
    
    val anyGT6 = numbers.any { it > 6 }                  // 3

    println("Numbers: $numbers")
    println("Is there any number less than 0: $anyNegative")
    println("Is there any number greater than 6: $anyGT6")
}
  1. Defines a collection of numbers.
  2. Checks if there are negative elements.
  3. Checks if there are elements greater than 6.

Function all

Function all returns true if all elements in collection match the given predicate.

fun main() {

    val numbers = listOf(1, -2, 3, -4, 5, -6)            // 1
    
    val allEven = numbers.all { it % 2 == 0 }            // 2
    
    val allLess6 = numbers.all { it < 6 }                // 3

    println("Numbers: $numbers")
    println("All numbers are even: $allEven")
    println("All numbers are less than 6: $allLess6")
}
  1. Defines a collection of numbers.
  2. Checks whether all elements are even.
  3. Checks whether all elements are less than 6.

Function none

Function none returns true if there are no elements that match the given predicate in the collection.

fun main() {

    val numbers = listOf(1, -2, 3, -4, 5, -6)            // 1
    
    val allEven = numbers.none { it % 2 == 1 }           // 2
    
    val allLess6 = numbers.none { it > 6 }               // 3

    println("Numbers: $numbers")
    println("All numbers are even: $allEven")
    println("No element greater than 6: $allLess6")
}
  1. Defines a collection of numbers.
  2. Checks if there are no odd elements (all elements are even).
  3. Checks if there are no elements greater than 6.

find, findLast

The find and findLast functions return the first or the last collection element that matches the given predicate. If there are no such elements, these functions return null.

fun main() {

    val words = listOf("Lets", "find", "something", "in", "collection", "somehow")  // 1
    
    val first = words.find { it.startsWith("some") }                                // 2
    val last = words.findLast { it.startsWith("some") }                             // 3
    
    val nothing = words.find { it.contains("nothing") }                             // 4

    println("The first word starting with \"some\" is \"$first\"")
    println("The last word starting with \"some\" is \"$last\"")
    println("The first word containing \"nothing\" is ${nothing?.let { "\"$it\"" } ?: "null"}")
}
  1. Defines a collection of words.
  2. Looks for the first word starting with "some".
  3. Looks for the last word starting with "some".
  4. Looks for the first word containing "nothing".

first, last

first, last

These functions return the first and the last element of the collection correspondingly. You can also use them with a predicate; in this case, they return the first or the last element that matches the given predicate.

If a collection is empty or doesn't contain elements matching the predicate, the functions throw NoSuchElementException.

fun main() {

    val numbers = listOf(1, -2, 3, -4, 5, -6)            // 1
    
    val first = numbers.first()                          // 2
    val last = numbers.last()                            // 3
    
    val firstEven = numbers.first { it % 2 == 0 }        // 4
    val lastOdd = numbers.last { it % 2 != 0 }           // 5

    println("Numbers: $numbers")
    println("First $first, last $last, first even $firstEven, last odd $lastOdd")
}
  1. Defines a collection of numbers.
  2. Picks the first element.
  3. Picks the last element.
  4. Picks the first even element.
  5. Picks the last odd element.

firstOrNull, lastOrNull

These functions work almost the same way with one difference: they return null if there are no matching elements.

fun main() {

   val words = listOf("foo", "bar", "baz", "faz")         // 1
   val empty = emptyList<String>()                        // 2
   
   val first = empty.firstOrNull()                        // 3
   val last = empty.lastOrNull()                          // 4
   
   val firstF = words.firstOrNull { it.startsWith('f') }  // 5
   val firstZ = words.firstOrNull { it.startsWith('z') }  // 6
   val lastF = words.lastOrNull { it.endsWith('f') }      // 7
   val lastZ = words.lastOrNull { it.endsWith('z') }      // 8

   println("Empty list: first is $first, last is $last")
   println("Word list: first item starting with 'f' is $firstF, first item starting with 'z' is $firstZ")
   println("Word list: last item ending with 'f' is $lastF, last item ending with 'z' is $lastZ")
}
  1. Defines a collection of words.
  2. Defines an empty collection.
  3. Picks the first element from empty collection. It supposed to be null.
  4. Picks the last element from empty collection. It supposed to be null as well.
  5. Picks the first word starting with 'f'.
  6. Picks the first word starting with 'z'.
  7. Picks the last word ending with 'f'.
  8. Picks the last word ending with 'z'.

count

count functions returns either the total number of elements in a collection or the number of elements matching the given predicate.

fun main() {

    val numbers = listOf(1, -2, 3, -4, 5, -6)            // 1
    
    val totalCount = numbers.count()                     // 2
    val evenCount = numbers.count { it % 2 == 0 }        // 3

    println("Total number of elements: $totalCount")
    println("Number of even elements: $evenCount")
}
  1. Defines a collection of numbers.
  2. Counts the total number of elements.
  3. Counts the number of even elements.

associateBy, groupBy

Functions associateBy and groupBy build maps from the elements of a collection indexed by the specified key. The key is defined in the keySelector parameter. You can also specify an optional valueSelector to define what will be stored in the value of the map element.

The difference between associateBy and groupBy is how they process objects with the same key:

  • associateBy uses the last suitable element as the value.
  • groupBy builds a list of all suitable elements and puts it in the value.

The returned map preserves the entry iteration order of the original collection.

fun main() {


    data class Person(val name: String, val city: String, val phone: String) // 1

    val people = listOf(                                                     // 2
      Person("John", "Boston", "+1-888-123456"),
      Person("Sarah", "Munich", "+49-777-789123"),
      Person("Svyatoslav", "Saint-Petersburg", "+7-999-456789"),
      Person("Vasilisa", "Saint-Petersburg", "+7-999-123456"))
      
    val phoneBook = people.associateBy { it.phone }                          // 3
    val cityBook = people.associateBy(Person::phone, Person::city)           // 4
    val peopleCities = people.groupBy(Person::city, Person::name)            // 5
    val lastPersonCity = people.associateBy(Person::city, Person::name)      // 6


    println("People: $people")
    println("Phone book: $phoneBook")
    println("City book: $cityBook")
    println("People living in each city: $peopleCities")
    println("Last person living in each city: $lastPersonCity")
}
  1. Defines a data class that describes a person.
  2. Defines a collection of people.
  3. Builds a map from phone numbers to their owners' information. it.phone is the keySelector here. The valueSelector is not provided, so the values of the map are Person objects themselves.
  4. Builds a map from phone numbers to the cities where owners live. Person::city is the valueSelector here, so the values of the map contain only cities.
  5. Builds a map that contains cities and people living there. The values of the map are lists of person names.
  6. Builds a map that contains cities and the last person living there. The values of the map are names of the last person living in each city.

partition

The partition function splits the original collection into a pair of lists using a given predicate:

  1. Elements for which the predicate is true.
  2. Elements for which the predicate is false.
fun main() {

    val numbers = listOf(1, -2, 3, -4, 5, -6)                // 1
    
    val evenOdd = numbers.partition { it % 2 == 0 }           // 2
    val (positives, negatives) = numbers.partition { it > 0 } // 3

    println("Numbers: $numbers")
    println("Even numbers: ${evenOdd.first}")
    println("Odd numbers: ${evenOdd.second}")
    println("Positive numbers: $positives")
    println("Negative numbers: $negatives")
}

  1. Defines a collection of numbers.
  2. Splits numbers into a Pair of lists with even and odd numbers.
  3. Splits numbers into two lists with positive and negative numbers. Pair destructuring is applied here to get the Pair members.

flatMap

flatMap transforms each element of a collection into an iterable object and builds a single list of the transformation results. The transformation is user-defined.

fun main() {

    val fruitsBag = listOf("apple","orange","banana","grapes")  // 1
    val clothesBag = listOf("shirts","pants","jeans")           // 2
    val cart = listOf(fruitsBag, clothesBag)                    // 3
    val mapBag = cart.map { it }                                // 4
    val flatMapBag = cart.flatMap { it }                        // 5

    println("Your bags are: $mapBag")
    println("The things you bought are: $flatMapBag")
}
  1. Defines a collection of Strings with fruit names.
  2. Defines a collection of Strings with clothes names.
  3. Adds fruitsBag and clothesBag to the cart list.
  4. Builds a map of cart elements, which is a list of two lists.
  5. Builds a flatMap of cart elements, which is a single list consisting of elements from both lists.

minOrNull, maxOrNull

minOrNull and maxOrNull functions return the smallest and the largest element of a collection. If the collection is empty, they return null.

fun main() {

    val numbers = listOf(1, 2, 3)
    val empty = emptyList<Int>()
    val only = listOf(3)

    println("Numbers: $numbers, min = ${numbers.minOrNull()} max = ${numbers.maxOrNull()}") // 1
    println("Empty: $empty, min = ${empty.minOrNull()}, max = ${empty.maxOrNull()}")        // 2
    println("Only: $only, min = ${only.minOrNull()}, max = ${only.maxOrNull()}")            // 3
}
  1. For non-empty collection, functions return the smallest and the largest element.
  2. For empty collections, both functions return null.
  3. For collection with only one element, both functions return the same value.

sorted

sorted returns a list of collection elements sorted according to their natural sort order (ascending).

sortedBy sorts elements according to natural sort order of the values returned by specified selector function.

import kotlin.math.abs

fun main() {

    val shuffled = listOf(5, 4, 2, 1, 3, -10)                   // 1
    val natural = shuffled.sorted()                             // 2
    val inverted = shuffled.sortedBy { -it }                    // 3
    val descending = shuffled.sortedDescending()                // 4
    val descendingBy = shuffled.sortedByDescending { abs(it)  } // 5

    println("Shuffled: $shuffled")
    println("Natural order: $natural")
    println("Inverted natural order: $inverted")
    println("Inverted natural order value: $descending")
    println("Inverted natural order of absolute values: $descendingBy")
}
  1. Defines a collection of shuffled numbers.
  2. Sorts it in the natural order.
  3. Sorts it in the inverted natural order by using -it as a selector function.
  4. Sorts it in the inverted natural order by using sortedDescending.
  5. Sorts it in the inverted natural order of items' absolute values by using abs(it) as a selector function.

Map Element Access

When applied to a map, [] operator returns the value corresponding to the given key, or null if there is no such key in the map.

getValue function returns an existing value corresponding to the given key or throws an exception if the key wasn't found. For maps created with withDefault, getValue returns the default value instead of throwing an exception.

fun main(args: Array<String>) {

    val map = mapOf("key" to 42)
    
    val value1 = map["key"]                                     // 1
    val value2 = map["key2"]                                    // 2

    val value3: Int = map.getValue("key")                       // 1

    val mapWithDefault = map.withDefault { k -> k.length }
    val value4 = mapWithDefault.getValue("key2")                // 3
    
    try {
        map.getValue("anotherKey")                              // 4
    } catch (e: NoSuchElementException) {
        println("Message: $e")
    }


    println("value1 is $value1")
    println("value2 is $value2")
    println("value3 is $value3")
    println("value4 is $value4")
}
  1. Returns 42 because it's the value corresponding to the key "key".
  2. Returns null because "key2" is not in the map.
  3. Returns the default value because "key2" is absent. For this key it's 4.
  4. Throws NoSuchElementException because "anotherKey" is not in the map.

zip

zip function merges two given collections into a new collection. By default, the result collection contains Pairs of source collection elements with the same index. However, you can define your own structure of the result collection element.

The size of the result collection equals to the minimum size of a source collection.

fun main() {

    val A = listOf("a", "b", "c")                  // 1
    val B = listOf(1, 2, 3, 4)                     // 1

    val resultPairs = A zip B                      // 2
    val resultReduce = A.zip(B) { a, b -> "$a$b" } // 3

    println("A to B: $resultPairs")
    println("\$A\$B: $resultReduce")
}
  1. Defines two collections.
  2. Merges them into a list of pairs. The infix notation is used here.
  3. Merges them into a list of String values by the given transformation.

getOrElse

getOrElse provides safe access to elements of a collection. It takes an index and a function that provides the default value in cases when the index is out of bound.

fun main() {

    val list = listOf(0, 10, 20)
    println(list.getOrElse(1) { 42 })    // 1
    println(list.getOrElse(10) { 42 })   // 2
}
  1. Prints the element at the index 1.
  2. Prints 42 because the index 10 is out of bounds.

getOrElse can also be applied to Map to get the value for the given key.

fun main() {

    val map = mutableMapOf<String, Int?>()
    println(map.getOrElse("x") { 1 })       // 1
    
    map["x"] = 3
    println(map.getOrElse("x") { 1 })       // 2
    
    map["x"] = null
    println(map.getOrElse("x") { 1 })       // 3
}
  1. Prints the default value because the key "x" is not in the map.
  2. Prints 3, the value for the key "x".
  3. Prints the default value because the value for the key "x" is not defined.

Scope Functions

let

The Kotlin standard library function let can be used for scoping and null-checks. When called on an object, let executes the given block of code and returns the result of its last expression. The object is accessible inside the block by the reference it (by default) or a custom name.

fun customPrint(s: String) {
    print(s.uppercase())
}

fun main() {
    val empty = "test".let {               // 1
        customPrint(it)                    // 2
        it.isEmpty()                       // 3
    }
    println(" is empty: $empty")


    fun printNonNull(str: String?) {
        println("Printing \"$str\":")

        str?.let {                         // 4
            print("\t")
            customPrint(it)
            println()
        }
    }
    
    fun printIfBothNonNull(strOne: String?, strTwo: String?) {
        strOne?.let { firstString ->       // 5 
            strTwo?.let { secondString ->
                customPrint("$firstString : $secondString")
                println()
            }
        }
    }
    
    printNonNull(null)
    printNonNull("my string") 
    printIfBothNonNull("First","Second") 
}

  1. Calls the given block on the result on the string "test".
  2. Calls the function on "test" by the it reference.
  3. let returns the value of this expression.
  4. Uses safe call, so let and its code block will be executed only on non-null values.
  5. Uses the custom name instead of it, so that the nested let can access the context object of the outer let.

run

Like let, run is another scoping function from the standard library. Basically, it does the same: executes a code block and returns its result. The difference is that inside run the object is accessed by this. This is useful when you want to call the object's methods rather than pass it as an argument.


fun main() {
    fun getNullableLength(ns: String?) {
        println("for \"$ns\":")
        ns?.run {                                                  // 1
            println("\tis empty? " + isEmpty())                    // 2
            println("\tlength = $length")                           
            length                                                 // 3
        }
    }
    getNullableLength(null)
    getNullableLength("")
    getNullableLength("some string with Kotlin")
}
  1. Calls the given block on a nullable variable.
  2. Inside run, the object's members are accessed without its name.
  3. run returns the length of the given String if it's not null.

with

with is a non-extension function that can access members of its argument concisely: you can omit the instance name when referring to its members.

class Configuration(var host: String, var port: Int) 

fun main() {
    val configuration = Configuration(host = "127.0.0.1", port = 9000) 

    with(configuration) {
        println("$host:$port")
    }

    // instead of:
    println("${configuration.host}:${configuration.port}")    
}

apply

apply executes a block of code on an object and returns the object itself. Inside the block, the object is referenced by this. This function is handy for initializing objects.

data class Person(var name: String, var age: Int, var about: String) {
    constructor() : this("", 0, "")
}

fun main() {
    val jake = Person()                                     // 1
    val stringDescription = jake.apply {                    // 2
        name = "Jake"                                       // 3
        age = 30
        about = "Android developer"
    }.toString()                                            // 4
    println(stringDescription)
}
  1. Creates a Person() instance with default property values.
  2. Applies the code block (next 3 lines) to the instance.
  3. Inside apply, it's equivalent to jake.name = "Jake".
  4. The return value is the instance itself, so you can chain other operations.

also

also works like apply: it executes a given block and returns the object called. Inside the block, the object is referenced by it, so it's easier to pass it as an argument. This function is handy for embedding additional actions, such as logging in call chains.

data class Person(var name: String, var age: Int, var about: String) {
             constructor() : this("", 0, "")
}
         
fun writeCreationLog(p: Person) {
    println("A new person ${p.name} was created.")              
}
         
fun main() {
    val jake = Person("Jake", 30, "Android developer")   // 1
        .also {                                          // 2 
            writeCreationLog(it)                         // 3
    }
}
  1. Creates a Person() object with the given property values.
  2. Applies the given code block to the object. The return value is the object itself.
  3. Calls the logging function passing the object as an argument.

Delegation

Delegation Pattern

Kotlin supports easy implementation of the delegation pattern on the native level without any boilerplate code.

interface SoundBehavior {                                                          // 1
    fun makeSound()
}

class ScreamBehavior(val n: String): SoundBehavior {                                // 2
    override fun makeSound() = println("${n.uppercase()} !!!")
}

class RockAndRollBehavior(val n: String): SoundBehavior {                           // 2
    override fun makeSound() = println("I'm The King of Rock 'N' Roll: $n")
}

// Tom Araya is the "singer" of Slayer
class TomAraya(n: String): SoundBehavior by ScreamBehavior(n)                       // 3

// You should know ;)
class ElvisPresley(n: String): SoundBehavior by RockAndRollBehavior(n)              // 3

fun main() {
    val tomAraya = TomAraya("Thrash Metal")
    tomAraya.makeSound()                                                           // 4
    val elvisPresley = ElvisPresley("Dancin' to the Jailhouse Rock.")
    elvisPresley.makeSound()
}
  1. Defines the interface SoundBehavior with one method.
  2. The classes ScreamBehavior and RockAndRollBehavior implement the interface and contain their own implementations of the method.
  3. The classes TomAraya and ElvisPresley also implement the interface, but not the method. Instead, they delegate the method calls to the responsible implementation. The delegate object is defined after the by keyword. As you see, no boilerplate code is required.
  4. When makeSound() is called on tomAraya of type TomAraya or elvisPresley of type ElvisPresley, the call is delegated to the corresponding delegate object.

Delegated Properties

Kotlin provides a mechanism of delegated properties that allows delegating the calls of the property set and get methods to a certain object. The delegate object in this case should have the method getValue. For mutable properties, you'll also need setValue.

import kotlin.reflect.KProperty

class Example {
    var p: String by Delegate()                                               // 1

    override fun toString() = "Example Class"
}

class Delegate() {
    operator fun getValue(thisRef: Any?, prop: KProperty<*>): String {        // 2     
        return "$thisRef, thank you for delegating '${prop.name}' to me!"
    }

    operator fun setValue(thisRef: Any?, prop: KProperty<*>, value: String) { // 2
        println("$value has been assigned to ${prop.name} in $thisRef")
    }
}

fun main() {
    val e = Example()
    println(e.p)
    e.p = "NEW"
}
  1. Delegates property p of type String to the instance of class Delegate. The delegate object is defined after the by keyword.
  2. Delegation methods. The signatures of these methods are always as shown in the example. Implementations may contain any steps you need. For immutable properties only getValue is required.

Standard Delegates

The Kotlin standard library contains a bunch of useful delegates, like lazy, observable, and others. You may use them as is. For example lazyis used for lazy initialization.

class LazySample {
    init {
      println("created!")            // 1
    }
    
    val lazyStr: String by lazy {
        println("computed!")          // 2
        "my lazy"
    }
}

fun main() {
    val sample = LazySample()         // 1
    println("lazyStr = ${sample.lazyStr}")  // 2
    println(" = ${sample.lazyStr}")  // 3
}
  1. Property lazy is not initialized on object creation.
  2. The first call to get() executes the lambda expression passed to lazy() as an argument and saves the result.
  3. Further calls to get() return the saved result.

If you want thread safety, use blockingLazy() instead: it guarantees that the values will be computed only in one thread and that all threads will see the same value.

Storing Properties in a Map

Property delegation can be used for storing properties in a map. This is handy for tasks like parsing JSON or doing other "dynamic" stuff.

class User(val map: Map<String, Any?>) {
    val name: String by map                // 1
    val age: Int     by map                // 1
}

fun main() {
    val user = User(mapOf(
            "name" to "John Doe",
            "age"  to 25
    ))

    println("name = ${user.name}, age = ${user.age}")
}
  1. Delegates take values from the map by the string keys - names of properties.

You can delegate mutable properties to a map as well. In this case, the map will be modified upon property assignments. Note that you will need MutableMap instead of read-only Map.

Productivity Boosters

Named Arguments

As with most other programming languages (Java, C++, etc.), Kotlin supports passing arguments to methods and constructors according to the order they are defined. Kotlin also supports named arguments to allow clearer invocations and avoid mistakes with the order of arguments. Such mistakes are hard to find because they are not detected by the compiler, for example, when two sequential arguments have the same type.

fun format(userName: String, domain: String) = "$userName@$domain"

fun main() {
    println(format("mario", "example.com"))                         // 1
    println(format("domain.com", "username"))                       // 2
    println(format(userName = "foo", domain = "bar.com"))           // 3
    println(format(domain = "frog.com", userName = "pepe"))         // 4
}
  1. Calls a function with argument values.
  2. Calls a function with switched arguments. No syntax errors, but the result domain.com@username is incorrect.
  3. Calls a function with named arguments.
  4. When invoking a function with named arguments, you can specify them in any order you like.

String Templates

String templates allow you to include variable references and expressions into strings. When the value of a string is requested (for example, by println), all references and expressions are substituted with actual values.

fun main() {
    val greeting = "Kotliner"
    
    println("Hello $greeting")                  // 1 
    println("Hello ${greeting.uppercase()}")    // 2
}
  1. Prints a string with a variable reference. References in strings start with $.
  2. Prints a string with an expression. Expressions start with $ and are enclosed in curly braces.

Destructuring Declarations

Destructuring declaration syntax can be very handy, especially when you need an instance only for accessing its members. It lets you define the instance without a specific name therefore saving a few lines of code.

fun findMinMax(list: List<Int>): Pair<Int, Int> { 
    // do the math
    return Pair(50, 100) 
}

fun main() {
    val (x, y, z) = arrayOf(5, 10, 15)                              // 1

    val map = mapOf("Alice" to 21, "Bob" to 25)
    for ((name, age) in map) {                                      // 2
        println("$name is $age years old")          
    }

    val (min, max) = findMinMax(listOf(100, 90, 50, 98, 76, 83))    // 3

}
  1. Destructures an Array. The number of variables on the left side matches the number of arguments on the right side.
  2. Maps can be destructured as well. name and age variables are mapped to the map key and value.
  3. Built-in Pair and Triple types support destructuring too, even as return values from functions.
data class User(val username: String, val email: String)    // 1

fun getUser() = User("Mary", "mary@somewhere.com")

fun main() {
    val user = getUser()
    val (username, email) = user                            // 2
    println(username == user.component1())                  // 3

    val (_, emailAddress) = getUser()                       // 4
    
}
  1. Defines a data class.
  2. Destructures an instance. Declared values are mapped to the instance fields.
  3. Data class automatically defines the component1() and component2() methods that will be called during destructuring.
  4. Use underscore if you don't need one of the values, avoiding the compiler hint indicating an unused variable.
class Pair<K, V>(val first: K, val second: V) {  // 1
    operator fun component1(): K {              
        return first
    }

    operator fun component2(): V {              
        return second
    }
}

fun main() {
    val (num, name) = Pair(1, "one")             // 2

    println("num = $num, name = $name")
}
  1. Defines a custom Pair class with component1() and component2() methods.
  2. Destructures an instance of this class the same way as for built-in Pair.

Smart Casts

The Kotlin compiler is smart enough to perform type casts automatically in most cases, including:

  1. Casts from nullable types to their non-nullable counterparts.
  2. Casts from a supertype to a subtype.
import java.time.LocalDate
import java.time.chrono.ChronoLocalDate

fun main() {
    val date: ChronoLocalDate? = LocalDate.now()    // 1
    
    if (date != null) {
        println(date.isLeapYear)                    // 2
    }
    
    if (date != null && date.isLeapYear) {          // 3
        println("It's a leap year!")
    }
    
    if (date == null || !date.isLeapYear) {         // 4
        println("There's no Feb 29 this year...")
    }
    
    if (date is LocalDate) {
        val month = date.monthValue                 // 5
        println(month)
    }
}

  1. Declares a nullable variable.
  2. Smart-cast to non-nullable (thus allowing direct access to isLeapYear).
  3. Smart-cast inside a condition (this is possible because, like Java, Kotlin uses short-circuiting).
  4. Smart-cast inside a condition (also enabled by short-circuiting).
  5. Smart-cast to the subtype LocalDate.

This way, you can automatically use variables as desired in most cases without doing obvious casts manually.

Kotlin/JS

dynamic

dynamic is a special type in Kotlin/JS. It basically turns off Kotlin's type checker. That is needed in order to interoperate with untyped or loosely typed environments, such as the JavaScript ecosystem.

fun main(){
  val a: dynamic = "abc"                                               // 1
  val b: String = a                                                    // 2
  
  fun firstChar(s: String) = s[0]
  
  println("${firstChar(a)} == ${firstChar(b)}")                        // 3
  
  println("${a.charCodeAt(0, "dummy argument")} == ${b[0].toInt()}")   // 4
  
  println(a.charAt(1).repeat(3))                                       // 5
  
  fun plus(v: dynamic) = v + 2
  
  println("2 + 2 = ${plus(2)}")                                        // 6
  println("'2' + 2 = ${plus("2")}")
}
  1. Any value can be assigned to a dynamic variable type.
  2. A dynamic value can be assigned to anything.
  3. A dynamic variable can be passed as an argument to any function.
  4. Any property or function with any arguments can be called on a dynamic variable.
  5. A function call on a dynamic variable always returns a dynamic value, so it is possible to chain the calls.
  6. Operators, assignments, and indexed access ([..]) are translated "as is". Beware!

JS function

You can inline JavaScript code into your Kotlin code using the js("…") function. This should be used with extreme care.

fun main() {
    js("alert(\"alert from Kotlin!\")") // 1
}
  1. Sending a JavaScript alert from a Kotlin function.
fun main(){
  val json = js("{}")               // 1
  json.name = "Jane"                // 2
  json.hobby = "movies"
  println(JSON.stringify(json))     // 3
}
  1. Creates a JavaScript object literal. The js(...) function return type is dynamic.
  2. Adds some properties by utilizing the dynamic type capabilities.
  3. Passes the JSON to JavaScript API.

External declarations

external keyword allows to declare existing JavaScript API in a type-safe way.

external fun alert(msg: String)   // 1

fun main() {
  alert("Hi!")                    // 2
}
  1. Declares an existing JavaScript function alert which takes a single String argument.
  2. Uses alert as if it were regular Kotlin.

Note that Kotlin checks during compilation, that a single argument of type String is passed. Such a check prevents some bugs even when using pure JavaScript API.

Please refer to the docs in order to learn more about describing existing JavaScript API.

Canvas (Hello Kotlin)

The following example demonstrates usage of HTML5 Canvas from Kotlin.

Here strange creatures are watching the kotlin logo. You can drag'n'drop them as well as the logo. Doubleclick to add more creatures but be careful. They may be watching you!

package creatures

import org.w3c.dom.*
import org.w3c.dom.events.MouseEvent
import kotlinx.browser.document
import kotlinx.browser.window
import kotlin.math.*


fun getImage(path: String): HTMLImageElement {
    val image = window.document.createElement("img") as HTMLImageElement
    image.src = path
    return image
}

val canvas = initializeCanvas()

fun initializeCanvas(): HTMLCanvasElement {
    val canvas = document.createElement("canvas") as HTMLCanvasElement
    val context = canvas.getContext("2d") as CanvasRenderingContext2D
    context.canvas.width  = window.innerWidth.toInt()
    context.canvas.height = window.innerHeight.toInt()
    document.body!!.appendChild(canvas)
    return canvas
}

val context: CanvasRenderingContext2D
    get() {
        return canvas.getContext("2d") as CanvasRenderingContext2D
    }

abstract class Shape() {

    abstract fun draw(state: CanvasState)
    // these two abstract methods defines that our shapes can be dragged
    operator abstract fun contains(mousePos: Vector): Boolean

    abstract var pos: Vector

    var selected: Boolean = false

    // a couple of helper extension methods we'll be using in the derived classes
    fun CanvasRenderingContext2D.shadowed(shadowOffset: Vector, alpha: Double, render: CanvasRenderingContext2D.() -> Unit) {
        save()
        shadowColor = "rgba(100, 100, 100, $alpha)"
        shadowBlur = 5.0
        shadowOffsetX = shadowOffset.x
        shadowOffsetY = shadowOffset.y
        render()
        restore()
    }

    fun CanvasRenderingContext2D.fillPath(constructPath: CanvasRenderingContext2D.() -> Unit) {
        beginPath()
        constructPath()
        closePath()
        fill()
    }
}

val logoImage by lazy { getImage("https://play.kotlinlang.org/assets/kotlin-logo.svg") }

val logoImageSize = v(64.0, 64.0)

val Kotlin = Logo(v(canvas.width / 2.0 - logoImageSize.x / 2.0 - 64, canvas.height / 2.0 - logoImageSize.y / 2.0 - 64))

class Logo(override var pos: Vector) : Shape() {
    val relSize: Double = 0.18
    val shadowOffset = v(-3.0, 3.0)
    var size: Vector = logoImageSize * relSize
    // get-only properties like this saves you lots of typing and are very expressive
    val position: Vector
        get() = if (selected) pos - shadowOffset else pos


    fun drawLogo(state: CanvasState) {
        if (!logoImage.complete) {
            state.changed = true
            return
        }
        
        size = logoImageSize * (state.size.x / logoImageSize.x) * relSize
        state.context.drawImage(getImage("https://play.kotlinlang.org/assets/kotlin-logo.svg"), 0.0, 0.0,
                logoImageSize.x, logoImageSize.y,
                position.x, position.y,
                size.x, size.y)
    }

    override fun draw(state: CanvasState) {
        val context = state.context
        if (selected) {
            // using helper we defined in Shape class
            context.shadowed(shadowOffset, 0.2) {
                drawLogo(state)
            }
        } else {
            drawLogo(state)
        }
    }

    override fun contains(mousePos: Vector): Boolean = mousePos.isInRect(pos, size)

    val centre: Vector
        get() = pos + size * 0.5
}

val gradientGenerator by lazy { RadialGradientGenerator(context) }

class Creature(override var pos: Vector, val state: CanvasState) : Shape() {

    val shadowOffset = v(-5.0, 5.0)
    val colorStops = gradientGenerator.getNext()
    val relSize = 0.05
    // these properties have no backing fields and in java/javascript they could be represented as little helper functions
    val radius: Double
        get() = state.width * relSize
    val position: Vector
        get() = if (selected) pos - shadowOffset else pos
    val directionToLogo: Vector
        get() = (Kotlin.centre - position).normalized

    //notice how the infix call can make some expressions extremely expressive
    override fun contains(mousePos: Vector) = pos distanceTo mousePos < radius

    // defining more nice extension functions
    fun CanvasRenderingContext2D.circlePath(position: Vector, rad: Double) {
        arc(position.x, position.y, rad, 0.0, 2 * PI, false)
    }

    //notice we can use an extension function we just defined inside another extension function
    fun CanvasRenderingContext2D.fillCircle(position: Vector, rad: Double) {
        fillPath {
            circlePath(position, rad)
        }
    }

    override fun draw(state: CanvasState) {
        val context = state.context
        if (!selected) {
            drawCreature(context)
        } else {
            drawCreatureWithShadow(context)
        }
    }

    fun drawCreature(context: CanvasRenderingContext2D) {
        context.fillStyle = getGradient(context)
        context.fillPath {
            tailPath(context)
            circlePath(position, radius)
        }
        drawEye(context)
    }

    fun getGradient(context: CanvasRenderingContext2D): CanvasGradient {
        val gradientCentre = position + directionToLogo * (radius / 4)
        val gradient = context.createRadialGradient(gradientCentre.x, gradientCentre.y, 1.0, gradientCentre.x, gradientCentre.y, 2 * radius)
        for (colorStop in colorStops) {
            gradient.addColorStop(colorStop.first, colorStop.second)
        }
        return gradient
    }

    fun tailPath(context: CanvasRenderingContext2D) {
        val tailDirection = -directionToLogo
        val tailPos = position + tailDirection * radius * 1.0
        val tailSize = radius * 1.6
        val angle = PI / 6.0
        val p1 = tailPos + tailDirection.rotatedBy(angle) * tailSize
        val p2 = tailPos + tailDirection.rotatedBy(-angle) * tailSize
        val middlePoint = position + tailDirection * radius * 1.0
        context.moveTo(tailPos.x, tailPos.y)
        context.lineTo(p1.x, p1.y)
        context.quadraticCurveTo(middlePoint.x, middlePoint.y, p2.x, p2.y)
        context.lineTo(tailPos.x, tailPos.y)
    }

    fun drawEye(context: CanvasRenderingContext2D) {
        val eyePos = directionToLogo * radius * 0.6 + position
        val eyeRadius = radius / 3
        val eyeLidRadius = eyeRadius / 2
        context.fillStyle = "#FFFFFF"
        context.fillCircle(eyePos, eyeRadius)
        context.fillStyle = "#000000"
        context.fillCircle(eyePos, eyeLidRadius)
    }

    fun drawCreatureWithShadow(context: CanvasRenderingContext2D) {
        context.shadowed(shadowOffset, 0.7) {
            context.fillStyle = getGradient(context)
            fillPath {
                tailPath(context)
                context.circlePath(position, radius)
            }
        }
        drawEye(context)
    }
}

class CanvasState(val canvas: HTMLCanvasElement) {
    var width = canvas.width
    var height = canvas.height
    val size: Vector
        get() = v(width.toDouble(), height.toDouble())
    val context = creatures.context
    var changed = true
    var shapes = mutableListOf<Shape>()
    var selection: Shape? = null
    var dragOff = Vector()
    val interval = 1000 / 30

    init {
        canvas.onmousedown = { e: MouseEvent ->
            changed = true
            selection = null
            val mousePos = mousePos(e)
            for (shape in shapes) {
                if (mousePos in shape) {
                    dragOff = mousePos - shape.pos
                    shape.selected = true
                    selection = shape
                    break
                }
            }
        }

        canvas.onmousemove = { e: MouseEvent ->
            if (selection != null) {
                selection!!.pos = mousePos(e) - dragOff
                changed = true
            }
        }

        canvas.onmouseup = { e: MouseEvent ->
            if (selection != null) {
                selection!!.selected = false
            }
            selection = null
            changed = true
            this
        }

        canvas.ondblclick = { e: MouseEvent ->
            val newCreature = Creature(mousePos(e), this@CanvasState)
            addShape(newCreature)
            changed = true
            this
        }

        window.setInterval({
            draw()
        }, interval)
    }

    fun mousePos(e: MouseEvent): Vector {
        var offset = Vector()
        var element: HTMLElement? = canvas
        while (element != null) {
            val el: HTMLElement = element
            offset += Vector(el.offsetLeft.toDouble(), el.offsetTop.toDouble())
            element = el.offsetParent as HTMLElement?
        }
        return Vector(e.pageX, e.pageY) - offset
    }

    fun addShape(shape: Shape) {
        shapes.add(shape)
        changed = true
    }

    fun clear() {
        context.fillStyle = "#D0D0D0"
        context.fillRect(0.0, 0.0, width.toDouble(), height.toDouble())
        context.strokeStyle = "#000000"
        context.lineWidth = 4.0
        context.strokeRect(0.0, 0.0, width.toDouble(), height.toDouble())
    }

    fun draw() {
        if (!changed) return
        
        changed = false
        
        clear()
        for (shape in shapes.asReversed()) {
            shape.draw(this)
        }
        Kotlin.draw(this)
    }
}

class RadialGradientGenerator(val context: CanvasRenderingContext2D) {
    val gradients = mutableListOf<Array<out Pair<Double, String>>>()
    var current = 0

    fun newColorStops(vararg colorStops: Pair<Double, String>) {
        gradients.add(colorStops)
    }

    init {
        newColorStops(Pair(0.0, "#F59898"), Pair(0.5, "#F57373"), Pair(1.0, "#DB6B6B"))
        newColorStops(Pair(0.39, "rgb(140,167,209)"), Pair(0.7, "rgb(104,139,209)"), Pair(0.85, "rgb(67,122,217)"))
        newColorStops(Pair(0.0, "rgb(255,222,255)"), Pair(0.5, "rgb(255,185,222)"), Pair(1.0, "rgb(230,154,185)"))
        newColorStops(Pair(0.0, "rgb(255,209,114)"), Pair(0.5, "rgb(255,174,81)"), Pair(1.0, "rgb(241,145,54)"))
        newColorStops(Pair(0.0, "rgb(132,240,135)"), Pair(0.5, "rgb(91,240,96)"), Pair(1.0, "rgb(27,245,41)"))
        newColorStops(Pair(0.0, "rgb(250,147,250)"), Pair(0.5, "rgb(255,80,255)"), Pair(1.0, "rgb(250,0,217)"))
    }

    fun getNext(): Array<out Pair<Double, String>> {
        val result = gradients.get(current)
        current = (current + 1) % gradients.size
        return result
    }
}

fun v(x: Double, y: Double) = Vector(x, y)

class Vector(val x: Double = 0.0, val y: Double = 0.0) {
    operator fun plus(v: Vector) = v(x + v.x, y + v.y)
    operator fun unaryMinus() = v(-x, -y)
    operator fun minus(v: Vector) = v(x - v.x, y - v.y)
    operator fun times(koef: Double) = v(x * koef, y * koef)
    infix fun distanceTo(v: Vector) = sqrt((this - v).sqr)
    fun rotatedBy(theta: Double): Vector {
        val sin = sin(theta)
        val cos = cos(theta)
        return v(x * cos - y * sin, x * sin + y * cos)
    }

    fun isInRect(topLeft: Vector, size: Vector) = (x >= topLeft.x) && (x <= topLeft.x + size.x) &&
            (y >= topLeft.y) && (y <= topLeft.y + size.y)

    val sqr: Double
        get() = x * x + y * y
    val normalized: Vector
        get() = this * (1.0 / sqrt(sqr))
}

fun main(args: Array<String>) {
    CanvasState(canvas).apply {
        addShape(Kotlin)
        addShape(Creature(size * 0.25, this))
        addShape(Creature(size * 0.75, this))
    }
}

Html Builder

Kotlin provides you with an option to describe structured data in a declarative style with builders.

Below is an example of a type-safe Groovy-style builder. In this example, we will describe an HTML page in Kotlin.

package html

fun main() {
        val result = html {                                            // 1
        head {                                                     // 2
            title { +"HTML encoding with Kotlin" }
        }
        body {                                                     // 2
            h1 { +"HTML encoding with Kotlin" }
            p {
                +"this format can be used as an"                   // 3
                +"alternative markup to HTML"                      // 3
            }

            // an element with attributes and text content
            a(href = "http://kotlinlang.org") { +"Kotlin" }

            // mixed content
            p {
                +"This is some"
                b { +"mixed" }
                +"text. For more see the"
                a(href = "http://kotlinlang.org") {
                    +"Kotlin"
                }
                +"project"
            }
            p {
                +"some text"
                ul {
                    for (i in 1..5)
                        li { +"${i}*2 = ${i*2}" }
                }
            }
        }
    }
        println(result)
}

interface Element {
    fun render(builder: StringBuilder, indent: String)
}

class TextElement(val text: String) : Element {
    override fun render(builder: StringBuilder, indent: String) {
        builder.append("$indent$text\n")
    }
}

@DslMarker
annotation class HtmlTagMarker

@HtmlTagMarker
abstract class Tag(val name: String) : Element {
    val children = arrayListOf<Element>()
    val attributes = hashMapOf<String, String>()

    protected fun <T : Element> initTag(tag: T, init: T.() -> Unit): T {
        tag.init()
        children.add(tag)
        return tag
    }

    override fun render(builder: StringBuilder, indent: String) {
        builder.append("$indent<$name${renderAttributes()}>\n")
        for (c in children) {
            c.render(builder, indent + "  ")
        }
        builder.append("$indent</$name>\n")
    }

    private fun renderAttributes(): String {
        val builder = StringBuilder()
        for ((attr, value) in attributes) {
            builder.append(" $attr=\"$value\"")
        }
        return builder.toString()
    }

    override fun toString(): String {
        val builder = StringBuilder()
        render(builder, "")
        return builder.toString()
    }
}

abstract class TagWithText(name: String) : Tag(name) {
    operator fun String.unaryPlus() {
        children.add(TextElement(this))
    }
}
class HTML() : TagWithText("html") {
    fun head(init: Head.() -> Unit) = initTag(Head(), init)
    fun body(init: Body.() -> Unit) = initTag(Body(), init)
}


class Head() : TagWithText("head") {
    fun title(init: Title.() -> Unit) = initTag(Title(), init)
}

class Title() : TagWithText("title")

abstract class BodyTag(name: String) : TagWithText(name) {
    fun b(init: B.() -> Unit) = initTag(B(), init)
    fun p(init: P.() -> Unit) = initTag(P(), init)
    fun h1(init: H1.() -> Unit) = initTag(H1(), init)
    fun ul(init: UL.() -> Unit) = initTag(UL(), init)
    fun a(href: String, init: A.() -> Unit) {
        val a = initTag(A(), init)
        a.href = href
   }
}

class Body() : BodyTag("body")
class UL() : BodyTag("ul") {
    fun li(init: LI.() -> Unit) = initTag(LI(), init)
}

class B() : BodyTag("b")
class LI() : BodyTag("li")
class P() : BodyTag("p")
class H1() : BodyTag("h1")

class A : BodyTag("a") {
    var href: String
        get() = attributes["href"]!!
        set(value) {
            attributes["href"] = value
        }
}

fun html(init: HTML.() -> Unit): HTML {
    val html = HTML()
    html.init()
    return html
}

  1. html is actually a function call that takes a lambda expression as an argument. html function takes one parameter which is itself a function. The type of the function is HTML.() -> Unit, which is a function type with receiver. This means that we need to pass an instance of type HTML (a receiver) to the function, and we can call members of that instance inside the function.

  2. head and body are member functions of theHTML class.

  3. Adds the text to tags by calling the unaryPlus() operation, like +"HTML encoding with Kotlin".

For details see: Type Safe Builders